Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio

نویسنده

  • M. Spohn
چکیده

Soil microbial respiration is a central process in the terrestrial carbon (C) cycle. In this study, I tested the effect of the carbon-to-nitrogen (C : N) ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global data set on microbial respiration per unit microbial biomass C – termed the metabolic quotient (qCO2) – was compiled from literature data. It was found that qCO2 in the soil litter layers was positively correlated with the litter C : N ratio and was negatively correlated with the litter nitrogen (N) concentration. The positive relation between qCO2 and the litter C : N ratio resulted from an increase in respiration with the C : N ratio in combination with no significant effect of the litter C : N ratio on the soil microbial biomass C concentration. The results suggest that soil microorganisms respire more C both in absolute terms and per unit microbial biomass C when decomposing N-poor substrate. The reasons for the observed relationship between qCO2 and the litter layer C : N ratio could be microbial N mining, overflow respiration or the inhibition of oxidative enzymes at high N concentrations. In conclusion, the results show that qCO2 increases with the litter layer C : N ratio. Thus, the findings indicate that atmospheric N deposition, leading to decreased litter C : N ratios, might decrease microbial respiration in soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Different Land Uses on New Indices of Soil Quality in Central Alborz Region

Different land uses have various effects on the changes of soil properties. The purpose of this study was to evaluate the effects of natural forest, needle-leaved plantation and rangelands of central Alborz on new indices of soil quality (i.e. organic matter stratification, carbon management index and soil biological activities). For this purpose, eight samples from organic layer (litter) and m...

متن کامل

Alterations in soil microbial community composition and biomass following agricultural land use change

The effect of agricultural land use change on soil microbial community composition and biomass remains a widely debated topic. Here, we investigated soil microbial community composition and biomass [e.g., bacteria (B), fungi (F), Arbuscular mycorrhizal fungi (AMF) and Actinomycete (ACT)] using phospholipid fatty acids (PLFAs) analysis, and basal microbial respiration in afforested, cropland and...

متن کامل

Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling

Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast Chi...

متن کامل

Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils

Empirical studies show that nitrogen (N) addition often reduces microbial decomposition of soil organic matter (SOM) and carbon dioxide (CO2) production via microbial respiration. Although predictions from theoretical models support these findings, the mechanisms that drive this response remain unclear. To address this uncertainty, we sampled soils of three grassland sites in the U.S. Central G...

متن کامل

Field and lab conditions alter microbial enzyme and biomass dynamics driving decomposition of the same leaf litter

Fluctuations in climate and edaphic factors influence field decomposition rates and preclude a complete understanding of how microbial communities respond to plant litter quality. In contrast, laboratory microcosms isolate the intrinsic effects of litter chemistry and microbial community from extrinsic effects of environmental variation. Used together, these paired approaches provide mechanisti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015